deephyper.sklearn.classifier.run_autosklearn1#
- deephyper.sklearn.classifier.run_autosklearn1(config: dict, load_data: callable) float [source]#
Run function which can be used for AutoML classification.
It has to be used with the
deephyper.sklearn.classifier.problem_autosklearn1
problem definition which corresponds to:Configuration space object: Hyperparameters: C, Type: UniformFloat, Range: [1e-05, 10.0], Default: 0.01, on log-scale alpha, Type: UniformFloat, Range: [1e-05, 10.0], Default: 0.01, on log-scale classifier, Type: Categorical, Choices: {RandomForest, Logistic, AdaBoost, KNeighbors, MLP, SVC, XGBoost}, Default: RandomForest gamma, Type: UniformFloat, Range: [1e-05, 10.0], Default: 0.01, on log-scale kernel, Type: Categorical, Choices: {linear, poly, rbf, sigmoid}, Default: linear max_depth, Type: UniformInteger, Range: [2, 100], Default: 14, on log-scale n_estimators, Type: UniformInteger, Range: [1, 2000], Default: 45, on log-scale n_neighbors, Type: UniformInteger, Range: [1, 100], Default: 50 Conditions: (C | classifier == 'Logistic' || C | classifier == 'SVC') (gamma | kernel == 'rbf' || gamma | kernel == 'poly' || gamma | kernel == 'sigmoid') (n_estimators | classifier == 'RandomForest' || n_estimators | classifier == 'AdaBoost') alpha | classifier == 'MLP' kernel | classifier == 'SVC' max_depth | classifier == 'RandomForest' n_neighbors | classifier == 'KNeighbors'