deephyper.sklearn.regressor.run_autosklearn1#
- deephyper.sklearn.regressor.run_autosklearn1(config: dict, load_data: callable) float [source]#
Run function which can be used for AutoML regression.
It has to be used with the
deephyper.sklearn.regressor.problem_autosklearn1
problem definition which corresponds to:Configuration space object: Hyperparameters: C, Type: UniformFloat, Range: [1e-05, 10.0], Default: 0.01, on log-scale alpha, Type: UniformFloat, Range: [1e-05, 10.0], Default: 0.01, on log-scale gamma, Type: UniformFloat, Range: [1e-05, 10.0], Default: 0.01, on log-scale kernel, Type: Categorical, Choices: {linear, poly, rbf, sigmoid}, Default: linear max_depth, Type: UniformInteger, Range: [2, 100], Default: 14, on log-scale n_estimators, Type: UniformInteger, Range: [1, 2000], Default: 45, on log-scale n_neighbors, Type: UniformInteger, Range: [1, 100], Default: 50 regressor, Type: Categorical, Choices: {RandomForest, Linear, AdaBoost, KNeighbors, MLP, SVR, XGBoost}, Default: RandomForest Conditions: (gamma | kernel == 'rbf' || gamma | kernel == 'poly' || gamma | kernel == 'sigmoid') (n_estimators | regressor == 'RandomForest' || n_estimators | regressor == 'AdaBoost') C | regressor == 'SVR' alpha | regressor == 'MLP' kernel | regressor == 'SVR' max_depth | regressor == 'RandomForest' n_neighbors | regressor == 'KNeighbors'