deephyper.problem.BetaIntegerHyperparameter
deephyper.problem.BetaIntegerHyperparameter#
-
class
deephyper.problem.
BetaIntegerHyperparameter
# Bases:
ConfigSpace.hyperparameters.UniformIntegerHyperparameter
Methods
allow_greater_less_comparison
check_default
check_int
compare
compare_vector
Returns the maximal density on the pdf for the parameter (so not the mode, but the value of the pdf on the mode).
Get the neighbors of a value
get_num_neighbors
get_size
has_neighbors
is_legal
Check whether the given value is a legal value for the vector representation of this hyperparameter.
Computes the probability density function of the hyperparameter in the hyperparameter space (the one specified by the user).
scipy compatibility wrapper for
_sample
, allowing the hyperparameter to be used in sklearn API hyperparameter searchers, eg.sample
to_uniform
Attributes
alpha
beta
bfhp
default_value
log
lower
meta
name
normalized_default_value
q
upper
-
get_max_density
()# Returns the maximal density on the pdf for the parameter (so not the mode, but the value of the pdf on the mode).
-
get_neighbors
()# Get the neighbors of a value
Note
This assumes the value is in the unit-hypercube [0, 1]
- Parameters
value (float) – The value to get neighbors around. This assume the
value
has been converted to the [0, 1] range which can be done with_inverse_transform
.rs (RandomState) – The random state to use
number (int = 4) – How many neighbors to get
transform (bool = False) – Whether to transform this value from the unit cube, back to the hyperparameter’s specified range of values.
std (float = 0.2) – The std. dev. to use in the [0, 1] hypercube space while sampling for neighbors.
- Returns
Some
number
of neighbors centered aroundvalue
.- Return type
List[int]
-
is_legal_vector
()# Check whether the given value is a legal value for the vector representation of this hyperparameter.
- Parameters
value – the vector value to check
- Returns
True if the given value is a legal vector value, otherwise False
- Return type
-
pdf
()# Computes the probability density function of the hyperparameter in the hyperparameter space (the one specified by the user). For each hyperparameter type, there is also a method _pdf which operates on the transformed (and possibly normalized) hyperparameter space. Only legal values return a positive probability density, otherwise zero.
- Parameters
vector (np.ndarray) – the (N, ) vector of inputs for which the probability density function is to be computed.
- Returns
Probability density values of the input vector
- Return type
np.ndarray(N, )
-
rvs
()# scipy compatibility wrapper for
_sample
, allowing the hyperparameter to be used in sklearn API hyperparameter searchers, eg. GridSearchCV.
-