deephyper.problem.Float
deephyper.problem.Float#
-
deephyper.problem.
Float
(name: str, bounds: tuple[float, float] | None = None, *, distribution: Uniform | None = None, default: float | None = None, q: int | None = None, log: bool = False, meta: dict | None = None) → ConfigSpace.hyperparameters.UniformFloatHyperparameter[source]# -
deephyper.problem.
Float
(name: str, bounds: tuple[float, float] | None = None, *, distribution: ConfigSpace.api.distributions.Normal, default: float | None = None, q: int | None = None, log: bool = False, meta: dict | None = None) → ConfigSpace.hyperparameters.NormalFloatHyperparameter -
deephyper.problem.
Float
(name: str, bounds: tuple[float, float] | None = None, *, distribution: ConfigSpace.api.distributions.Beta, default: float | None = None, q: int | None = None, log: bool = False, meta: dict | None = None) → ConfigSpace.hyperparameters.BetaFloatHyperparameter Create a FloatHyperparameter.
# Uniformly distributed Float("a", (1, 10)) Float("a", (1, 10), distribution=Uniform()) # Normally distributed at 2 with std 3 Float("b", distribution=Normal(2, 3)) Float("b", (0, 5), distribution=Normal(2, 3)) # ... bounded # Beta distributed with alpha 1 and beta 2 Float("c", distribution=Beta(1, 2)) Float("c", (0, 3), distribution=Beta(1, 2)) # ... bounded # Give it a default value Float("a", (1, 10), default=4.3) # Sample on a log scale Float("a", (1, 100), log=True) # Quantized into three brackets Float("a", (1, 10), q=3) # Add meta info to the param Float("a", (1.0, 10), meta={"use": "For counting chickens"})
Note
Float is actually a function, please use the corresponding return types if doing an isinstance(param, type) check and not Float.
- Parameters
name (str) – The name to give to this hyperparameter
bounds (tuple[float, float] | None = None) – The bounds to give to the float. Note that by default, this is required for Uniform distribution, which is the default distribution
distribution (Uniform | Normal | Beta, = Uniform) – The distribution to use for the hyperparameter. See above
default (float | None = None) – The default value to give to the hyperparameter.
q (float | None = None) –
The quantization factor, must evenly divide the boundaries.
Note
Quantization points act are not equal and require experimentation to be certain about
log (bool = False) – Whether to this parameter lives on a log scale
meta (dict | None = None) – Any meta information you want to associate with this parameter
- Returns
Returns the corresponding hyperparameter type
- Return type
UniformFloatHyperparameter | NormalFloatHyperparameter | BetaFloatHyperparameter