deephyper.problem.Integer
deephyper.problem.Integer#
-
deephyper.problem.
Integer
(name: str, bounds: tuple[int, int] | None = None, *, distribution: Uniform | None = None, default: int | None = None, q: int | None = None, log: bool = False, meta: dict | None = None) → ConfigSpace.hyperparameters.UniformIntegerHyperparameter[source]# -
deephyper.problem.
Integer
(name: str, bounds: tuple[int, int] | None = None, *, distribution: ConfigSpace.api.distributions.Normal, default: int | None = None, q: int | None = None, log: bool = False, meta: dict | None = None) → ConfigSpace.hyperparameters.NormalIntegerHyperparameter -
deephyper.problem.
Integer
(name: str, bounds: tuple[int, int] | None = None, *, distribution: ConfigSpace.api.distributions.Beta, default: int | None = None, q: int | None = None, log: bool = False, meta: dict | None = None) → ConfigSpace.hyperparameters.BetaIntegerHyperparameter Create an IntegerHyperparameter.
# Uniformly distributed Integer("a", (1, 10)) Integer("a", (1, 10), distribution=Uniform()) # Normally distributed at 2 with std 3 Integer("b", distribution=Normal(2, 3)) Integer("b", (0, 5), distribution=Normal(2, 3)) # ... bounded # Beta distributed with alpha 1 and beta 2 Integer("c", distribution=Beta(1, 2)) Integer("c", (0, 3), distribution=Beta(1, 2)) # ... bounded # Give it a default value Integer("a", (1, 10), default=4) # Sample on a log scale Integer("a", (1, 100), log=True) # Quantized into three brackets Integer("a", (1, 10), q=3) # Add meta info to the param Integer("a", (1, 10), meta={"use": "For counting chickens"})
Note
Integer is actually a function, please use the corresponding return types if doing an isinstance(param, type) check and not Integer.
- Parameters
name (str) – The name to give to this hyperparameter
bounds (tuple[int, int] | None = None) – The bounds to give to the integer. Note that by default, this is required for Uniform distribution, which is the default distribution
distribution (Uniform | Normal | Beta, = Uniform) – The distribution to use for the hyperparameter. See above
default (int | None = None) – The default value to give to the hyperparameter.
q (int | None = None) –
The quantization factor, must evenly divide the boundaries. Sampled values will be
full range 1 4 7 10 |--------------| | | | | q = 3
All samples here will then be in {1, 4, 7, 10}
Note
Quantization points act are not equal and require experimentation to be certain about
log (bool = False) – Whether to this parameter lives on a log scale
meta (dict | None = None) – Any meta information you want to associate with this parameter
- Returns
Returns the corresponding hyperparameter type
- Return type
UniformIntegerHyperparameter | NormalIntegerHyperparameter | BetaIntegerHyperparameter