deephyper.problem.NormalIntegerHyperparameter#

class deephyper.problem.NormalIntegerHyperparameter#

Bases: ConfigSpace.hyperparameters.IntegerHyperparameter

Methods

allow_greater_less_comparison

check_default

check_int

compare

compare_vector

get_max_density

Returns the maximal density on the pdf for the parameter (so not the mode, but the value of the pdf on the mode).

get_neighbors

get_num_neighbors

get_size

has_neighbors

is_legal

is_legal_vector

Check whether the given value is a legal value for the vector representation of this hyperparameter.

pdf

Computes the probability density function of the hyperparameter in the hyperparameter space (the one specified by the user).

rvs

scipy compatibility wrapper for _sample, allowing the hyperparameter to be used in sklearn API hyperparameter searchers, eg.

sample

to_uniform

Attributes

default_value

log

lower

meta

mu

name

nfhp

normalized_default_value

q

sigma

upper

get_max_density()#

Returns the maximal density on the pdf for the parameter (so not the mode, but the value of the pdf on the mode).

Check whether the given value is a legal value for the vector representation of this hyperparameter.

Parameters

value – the vector value to check

Returns

True if the given value is a legal vector value, otherwise False

Return type

bool

pdf()#

Computes the probability density function of the hyperparameter in the hyperparameter space (the one specified by the user). For each hyperparameter type, there is also a method _pdf which operates on the transformed (and possibly normalized) hyperparameter space. Only legal values return a positive probability density, otherwise zero.

Parameters

vector (np.ndarray) – the (N, ) vector of inputs for which the probability density function is to be computed.

Returns

Probability density values of the input vector

Return type

np.ndarray(N, )

rvs()#

scipy compatibility wrapper for _sample, allowing the hyperparameter to be used in sklearn API hyperparameter searchers, eg. GridSearchCV.