deephyper.problem.NormalIntegerHyperparameter
deephyper.problem.NormalIntegerHyperparameter#
-
class
deephyper.problem.
NormalIntegerHyperparameter
# Bases:
ConfigSpace.hyperparameters.IntegerHyperparameter
Methods
allow_greater_less_comparison
check_default
check_int
compare
compare_vector
Returns the maximal density on the pdf for the parameter (so not the mode, but the value of the pdf on the mode).
get_neighbors
get_num_neighbors
get_size
has_neighbors
is_legal
Check whether the given value is a legal value for the vector representation of this hyperparameter.
Computes the probability density function of the hyperparameter in the hyperparameter space (the one specified by the user).
scipy compatibility wrapper for
_sample
, allowing the hyperparameter to be used in sklearn API hyperparameter searchers, eg.sample
to_uniform
Attributes
default_value
log
lower
meta
mu
name
nfhp
normalized_default_value
q
sigma
upper
-
get_max_density
()# Returns the maximal density on the pdf for the parameter (so not the mode, but the value of the pdf on the mode).
-
is_legal_vector
()# Check whether the given value is a legal value for the vector representation of this hyperparameter.
- Parameters
value – the vector value to check
- Returns
True if the given value is a legal vector value, otherwise False
- Return type
-
pdf
()# Computes the probability density function of the hyperparameter in the hyperparameter space (the one specified by the user). For each hyperparameter type, there is also a method _pdf which operates on the transformed (and possibly normalized) hyperparameter space. Only legal values return a positive probability density, otherwise zero.
- Parameters
vector (np.ndarray) – the (N, ) vector of inputs for which the probability density function is to be computed.
- Returns
Probability density values of the input vector
- Return type
np.ndarray(N, )
-
rvs
()# scipy compatibility wrapper for
_sample
, allowing the hyperparameter to be used in sklearn API hyperparameter searchers, eg. GridSearchCV.
-