deephyper.search.hps
deephyper.search.hps¶
Hyperparameter search algorithms.
-
class
deephyper.search.hps.
AMBS
(problem, evaluator, random_state: Optional[int] = None, log_dir: str = '.', verbose: int = 0, surrogate_model: str = 'RF', acq_func: str = 'UCB', kappa: float = 1.96, xi: float = 0.001, n_points: int = 10000, filter_duplicated: bool = True, liar_strategy: str = 'cl_max', n_jobs: int = 1, **kwargs)[source]¶ Bases:
deephyper.search._search.Search
Asynchronous Model-Based Search based on the Scikit-Optimized Optimizer.
- Parameters
problem (HpProblem) – Hyperparameter problem describing the search space to explore.
evaluator (Evaluator) – An
Evaluator
instance responsible of distributing the tasks.random_state (int, optional) – Random seed. Defaults to
None
.log_dir (str, optional) – Log directory where search’s results are saved. Defaults to
"."
.verbose (int, optional) – Indicate the verbosity level of the search. Defaults to
0
.surrogate_model (str, optional) – Surrogate model used by the Bayesian optimization. Can be a value in
["RF", "ET", "GBRT", "DUMMY"]
. Defaults to"RF"
.acq_func (str, optional) – Acquisition function used by the Bayesian optimization. Can be a value in
["UCB", "EI", "PI", "gp_hedge"]
. Defaults to"UCB"
.kappa (float, optional) – Manage the exploration/exploitation tradeoff for the “UCB” acquisition function. Defaults to
1.96
which corresponds to 95% of the confidence interval.xi (float, optional) – Manage the exploration/exploitation tradeoff of
"EI"
and"PI"
acquisition function. Defaults to0.001
.n_points (int, optional) – The number of configurations sampled from the search space to infer each batch of new evaluated configurations.
filter_duplicated (bool, optional) – Force the optimizer to sample unique points until the search space is “exhausted” in the sens that no new unique points can be found given the sampling size
n_points
. Defaults toTrue
.liar_strategy (str, optional) – Definition of the constant value use for the Liar strategy. Can be a value in
["cl_min", "cl_mean", "cl_max"]
. Defaults to"cl_max"
.n_jobs (int, optional) – Number of parallel processes used to fit the surrogate model of the Bayesian optimization. A value of
-1
will use all available cores. Defaults to1
.
-
fit_surrogate
(df)[source]¶ Fit the surrogate model of the search from a checkpointed Dataframe.
- Parameters
df (str|DataFrame) – a checkpoint from a previous search.
Example Usage:
>>> search = AMBS(problem, evaluator) >>> search.fit_surrogate("results.csv")
-
search
(max_evals: int = - 1, timeout: Optional[int] = None)¶ Execute the search algorithm.
- Parameters
- Returns
a pandas DataFrame containing the evaluations performed.
- Return type
DataFrame
-
terminate
()¶ Terminate the search.
- Raises
SearchTerminationError – raised when the search is terminated with SIGALARM