Note
Go to the end to download the full example code.
Profile the Worker Utilization#
Author(s): Romain Egele.
This example demonstrates the advantages of parallel evaluations over serial
evaluations. We start by defining an artificial black-box run
-function by
using the Ackley function:
We will use the time.sleep
function to simulate a budget of 2 secondes of
execution in average which helps illustrate the advantage of parallel
evaluations. The @profile
decorator is useful to collect starting/ending
time of the run
-function execution which help us know exactly when we are
inside the black-box. This decorator is necessary when profiling the worker
utilization. When using this decorator, the run
-function will return a
dictionnary with 2 new keys "timestamp_start"
and "timestamp_end"
.
The run
-function is defined in a separate module because of
the “multiprocessing” backend that we are using in this example.
1"""Set of Black-Box functions useful to build examples."""
2
3import time
4import numpy as np
5from deephyper.evaluator import profile
6
7
8def ackley(x, a=20, b=0.2, c=2 * np.pi):
9 d = len(x)
10 s1 = np.sum(x**2)
11 s2 = np.sum(np.cos(c * x))
12 term1 = -a * np.exp(-b * np.sqrt(s1 / d))
13 term2 = -np.exp(s2 / d)
14 y = term1 + term2 + a + np.exp(1)
15 return y
16
17
18@profile
19def run_ackley(config, sleep_loc=2, sleep_scale=0.5):
20 # to simulate the computation of an expensive black-box
21 if sleep_loc > 0:
22 t_sleep = np.random.normal(loc=sleep_loc, scale=sleep_scale)
23 t_sleep = max(t_sleep, 0)
24 time.sleep(t_sleep)
25
26 x = np.array([config[k] for k in config if "x" in k])
27 x = np.asarray_chkfinite(x) # ValueError if any NaN or Inf
28 return -ackley(x) # maximisation is performed
After defining the black-box we can continue with the definition of our main script:
import black_box_util as black_box
import matplotlib.pyplot as plt
from deephyper.analysis import figure_size
from deephyper.analysis.hpo import (
plot_search_trajectory_single_objective_hpo,
plot_worker_utilization,
)
from deephyper.evaluator import Evaluator
from deephyper.evaluator.callback import TqdmCallback
from deephyper.hpo import CBO, HpProblem
Then we define the variable(s) we want to optimize. For this problem we
optimize Ackley in a 2-dimensional search space, the true minimul is
located at (0, 0)
.
Configuration space object:
Hyperparameters:
x0, Type: UniformFloat, Range: [-32.768, 32.768], Default: 0.0
x1, Type: UniformFloat, Range: [-32.768, 32.768], Default: 0.0
Then we define a parallel search.
if __name__ == "__main__":
timeout = 20
num_workers = 4
results = {}
evaluator = Evaluator.create(
black_box.run_ackley,
method="process",
method_kwargs={
"num_workers": num_workers,
"callbacks": [TqdmCallback()],
},
)
search = CBO(
problem,
evaluator,
random_state=42,
)
results = search.search(timeout=timeout)
WARNING:root:Results file already exists, it will be renamed to /Users/romainegele/Documents/Argonne/deephyper/examples/results_20241125-183504.csv
0it [00:00, ?it/s]
1it [00:00, 6423.13it/s, failures=0, objective=-19.8]
2it [00:00, 6.45it/s, failures=0, objective=-19.8]
2it [00:00, 6.45it/s, failures=0, objective=-19.8]
3it [00:00, 6.45it/s, failures=0, objective=-19.8]
4it [00:00, 5.37it/s, failures=0, objective=-19.8]
4it [00:00, 5.37it/s, failures=0, objective=-19.8]
5it [00:01, 2.74it/s, failures=0, objective=-19.8]
5it [00:01, 2.74it/s, failures=0, objective=-19.8]
6it [00:01, 3.38it/s, failures=0, objective=-19.8]
6it [00:01, 3.38it/s, failures=0, objective=-19.8]
7it [00:02, 2.19it/s, failures=0, objective=-19.8]
7it [00:02, 2.19it/s, failures=0, objective=-19.8]
8it [00:02, 2.33it/s, failures=0, objective=-19.8]
8it [00:02, 2.33it/s, failures=0, objective=-15.4]
9it [00:03, 2.03it/s, failures=0, objective=-15.4]
9it [00:03, 2.03it/s, failures=0, objective=-15.4]
10it [00:04, 1.92it/s, failures=0, objective=-15.4]
10it [00:04, 1.92it/s, failures=0, objective=-15.4]
11it [00:04, 2.43it/s, failures=0, objective=-15.4]
11it [00:04, 2.43it/s, failures=0, objective=-15.4]
12it [00:05, 1.89it/s, failures=0, objective=-15.4]
12it [00:05, 1.89it/s, failures=0, objective=-12.6]
13it [00:06, 1.45it/s, failures=0, objective=-12.6]
13it [00:06, 1.45it/s, failures=0, objective=-12.6]
14it [00:06, 1.94it/s, failures=0, objective=-12.6]
14it [00:06, 1.94it/s, failures=0, objective=-12.6]
15it [00:06, 2.34it/s, failures=0, objective=-12.6]
15it [00:06, 2.34it/s, failures=0, objective=-12.6]
16it [00:06, 2.57it/s, failures=0, objective=-12.6]
16it [00:06, 2.57it/s, failures=0, objective=-12.6]
17it [00:07, 1.79it/s, failures=0, objective=-12.6]
17it [00:07, 1.79it/s, failures=0, objective=-6.37]
18it [00:08, 1.55it/s, failures=0, objective=-6.37]
18it [00:08, 1.55it/s, failures=0, objective=-6.37]
19it [00:08, 1.79it/s, failures=0, objective=-6.37]
19it [00:08, 1.79it/s, failures=0, objective=-6.37]
20it [00:09, 2.25it/s, failures=0, objective=-6.37]
20it [00:09, 2.25it/s, failures=0, objective=-6.37]
21it [00:09, 1.72it/s, failures=0, objective=-6.37]
21it [00:09, 1.72it/s, failures=0, objective=-6.37]
22it [00:10, 1.79it/s, failures=0, objective=-6.37]
22it [00:10, 1.79it/s, failures=0, objective=-6.37]
23it [00:10, 1.95it/s, failures=0, objective=-6.37]
23it [00:10, 1.95it/s, failures=0, objective=-6.37]
24it [00:11, 1.76it/s, failures=0, objective=-6.37]
24it [00:11, 1.76it/s, failures=0, objective=-6.37]
25it [00:12, 1.58it/s, failures=0, objective=-6.37]
25it [00:12, 1.58it/s, failures=0, objective=-6.37]
26it [00:12, 1.85it/s, failures=0, objective=-6.37]
26it [00:12, 1.85it/s, failures=0, objective=-6.37]
27it [00:12, 2.37it/s, failures=0, objective=-6.37]
27it [00:12, 2.37it/s, failures=0, objective=-6.37]
28it [00:13, 1.71it/s, failures=0, objective=-6.37]
28it [00:13, 1.71it/s, failures=0, objective=-6.37]
29it [00:14, 1.65it/s, failures=0, objective=-6.37]
29it [00:14, 1.65it/s, failures=0, objective=-6.37]
30it [00:15, 1.53it/s, failures=0, objective=-6.37]
30it [00:15, 1.53it/s, failures=0, objective=-6.37]
31it [00:15, 1.97it/s, failures=0, objective=-6.37]
31it [00:15, 1.97it/s, failures=0, objective=-6.37]
32it [00:15, 1.95it/s, failures=0, objective=-6.37]
32it [00:15, 1.95it/s, failures=0, objective=-6.37]
33it [00:16, 1.84it/s, failures=0, objective=-6.37]
33it [00:16, 1.84it/s, failures=0, objective=-6.37]
34it [00:16, 1.96it/s, failures=0, objective=-6.37]
34it [00:16, 1.96it/s, failures=0, objective=-6.37]
35it [00:18, 1.15it/s, failures=0, objective=-6.37]
35it [00:18, 1.15it/s, failures=0, objective=-6.37]
36it [00:18, 1.15it/s, failures=0, objective=-6.37]
37it [00:18, 1.15it/s, failures=0, objective=-6.37]
Finally, we plot the results from the collected DataFrame.
if __name__ == "__main__":
t0 = results["m:timestamp_start"].iloc[0]
results["m:timestamp_start"] = results["m:timestamp_start"] - t0
results["m:timestamp_end"] = results["m:timestamp_end"] - t0
tmax = results["m:timestamp_end"].max()
fig, axes = plt.subplots(
nrows=2,
ncols=1,
sharex=True,
figsize=figure_size(width=600),
)
plot_search_trajectory_single_objective_hpo(
results, mode="min", x_units="seconds", ax=axes[0]
)
plot_worker_utilization(
results, num_workers=num_workers, profile_type="start/end", ax=axes[1]
)
plt.tight_layout()
plt.show()
/Users/romainegele/Documents/Argonne/deephyper/examples/plot_profile_worker_utilization.py:106: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
plt.show()
Total running time of the script: (0 minutes 24.680 seconds)