Skip to main content
Ctrl+K
DeepHyper v0.10.1- documentation - Home

Get Started

  • Installation
    • conda
    • jupyter
    • pip (recommended)
    • spack
    • uv
  • Examples
    • Black-box optimization
      • Generating Parameters with Experimental Design
      • Black-Box Optimization
      • Mutli-Objective Black-Box Optimization
      • Notify Failures in Hyperparameter optimization
      • Applying Transfer Learning to Black-Box Optimization
    • Hyperparameter optimization
      • Hyperparameter search for text classification
      • Hyperparameter optimization and overfitting
    • Parallelism
      • Queued Evaluator with MPI
      • Profile the Worker Utilization
      • From Sequential to Massively-Parallel Bayesian Optimization
      • Scaling Bayesian Optimization with Heterogeneous Parallelism
    • Uncertainty quantification
      • Hyperparameter Optimized Ensemble of Random Decision Trees with Uncertainty for Classification
      • Neural Architecture Search and Deep Ensemble with Uncertainty Quantification for Regression (Pytorch)
  • F.A.Q.
  • Blog (Events & Workshops)
  • Publications
  • Authors

API Reference

  • Analysis
    • deephyper.analysis.figure_size
    • deephyper.analysis.rank
    • deephyper.analysis.update_matplotlib_rc
    • deephyper.analysis.hpo
      • deephyper.analysis.hpo.filter_failed_objectives
      • deephyper.analysis.hpo.parameters_at_max
      • deephyper.analysis.hpo.parameters_at_topk
      • deephyper.analysis.hpo.parameters_from_row
      • deephyper.analysis.hpo.plot_search_trajectory_single_objective_hpo
      • deephyper.analysis.hpo.plot_worker_utilization
      • deephyper.analysis.hpo.read_results_from_csv
  • CLI
    • deephyper.cli.utils
      • deephyper.cli.utils.add_arguments_from_signature
      • deephyper.cli.utils.load_attr
      • deephyper.cli.utils.signature
      • deephyper.cli.utils.str2bool
  • Ensemble
    • deephyper.ensemble.EnsemblePredictor
    • deephyper.ensemble.aggregator
      • deephyper.ensemble.aggregator.Aggregator
      • deephyper.ensemble.aggregator.MeanAggregator
      • deephyper.ensemble.aggregator.MixedCategoricalAggregator
      • deephyper.ensemble.aggregator.MixedNormalAggregator
      • deephyper.ensemble.aggregator.ModeAggregator
    • deephyper.ensemble.loss
      • deephyper.ensemble.loss.AbsoluteError
      • deephyper.ensemble.loss.Any
      • deephyper.ensemble.loss.CategoricalCrossEntropy
      • deephyper.ensemble.loss.Loss
      • deephyper.ensemble.loss.NormalNegLogLikelihood
      • deephyper.ensemble.loss.SquaredError
      • deephyper.ensemble.loss.ZeroOneLoss
    • deephyper.ensemble.selector
      • deephyper.ensemble.selector.GreedySelector
      • deephyper.ensemble.selector.OnlineSelector
      • deephyper.ensemble.selector.Selector
      • deephyper.ensemble.selector.TopKSelector
  • Evaluator
    • deephyper.evaluator.parse_subprocess_result
    • deephyper.evaluator.profile
    • deephyper.evaluator.queued
    • deephyper.evaluator.to_json
    • deephyper.evaluator.Evaluator
    • deephyper.evaluator.HPOJob
    • deephyper.evaluator.Job
    • deephyper.evaluator.JobStatus
    • deephyper.evaluator.LokyEvaluator
    • deephyper.evaluator.MPICommEvaluator
    • deephyper.evaluator.ProcessPoolEvaluator
    • deephyper.evaluator.RayEvaluator
    • deephyper.evaluator.RunningJob
    • deephyper.evaluator.SerialEvaluator
    • deephyper.evaluator.ThreadPoolEvaluator
    • deephyper.evaluator.MaximumJobsSpawnReached
    • deephyper.evaluator.callback
      • deephyper.evaluator.callback.hypervolume
      • deephyper.evaluator.callback.test_ipython_interpretor
      • deephyper.evaluator.callback.Callback
      • deephyper.evaluator.callback.HPOJob
      • deephyper.evaluator.callback.LoggerCallback
      • deephyper.evaluator.callback.ObjectiveRecorder
      • deephyper.evaluator.callback.SearchEarlyStopping
      • deephyper.evaluator.callback.TqdmCallback
      • deephyper.evaluator.callback.tqdm
    • deephyper.evaluator.mpi
    • deephyper.evaluator.storage
      • deephyper.evaluator.storage.SharedMemoryStorage
      • deephyper.evaluator.storage.MPIWinMutableMapping
      • deephyper.evaluator.storage.MPIWinStorage
      • deephyper.evaluator.storage.MemoryStorage
      • deephyper.evaluator.storage.NullStorage
      • deephyper.evaluator.storage.RayStorage
      • deephyper.evaluator.storage.RedisStorage
      • deephyper.evaluator.storage.Storage
    • deephyper.evaluator.utils
      • deephyper.evaluator.utils.test_ipython_interpretor
  • HPO
    • deephyper.hpo.CBO
    • deephyper.hpo.ExperimentalDesignSearch
    • deephyper.hpo.HpProblem
    • deephyper.hpo.MPIDistributedBO
    • deephyper.hpo.RandomSearch
    • deephyper.hpo.RegularizedEvolution
    • deephyper.hpo.Search
    • deephyper.hpo.gmm
      • deephyper.hpo.gmm.GMMSampler
    • deephyper.hpo.utils
      • deephyper.hpo.utils.get_inactive_value_of_hyperparameter
  • Predictor
    • deephyper.predictor.Predictor
    • deephyper.predictor.PredictorFileLoader
    • deephyper.predictor.PredictorLoader
    • deephyper.predictor.sklearn
      • deephyper.predictor.sklearn.SklearnPredictor
      • deephyper.predictor.sklearn.SklearnPredictorFileLoader
    • deephyper.predictor.torch
      • deephyper.predictor.torch.TorchPredictor
      • deephyper.predictor.torch.TorchPredictorFileLoader
  • Skopt
    • deephyper.skopt.dump
    • deephyper.skopt.expected_minimum
    • deephyper.skopt.load
    • deephyper.skopt.Optimizer
    • deephyper.skopt.Space
    • deephyper.skopt.acquisition
      • deephyper.skopt.acquisition.gaussian_acquisition_1D
      • deephyper.skopt.acquisition.gaussian_ei
      • deephyper.skopt.acquisition.gaussian_lcb
      • deephyper.skopt.acquisition.gaussian_mes
      • deephyper.skopt.acquisition.gaussian_pi
    • deephyper.skopt.joblib
      • deephyper.skopt.joblib.parse_version
    • deephyper.skopt.learning
      • deephyper.skopt.learning.ExtraTreesRegressor
      • deephyper.skopt.learning.GaussianProcessRegressor
      • deephyper.skopt.learning.GradientBoostingQuantileRegressor
      • deephyper.skopt.learning.RandomForestRegressor
      • deephyper.skopt.learning.forest
        • deephyper.skopt.learning.forest.ExtraTreesRegressor
        • deephyper.skopt.learning.forest.RandomForestRegressor
      • deephyper.skopt.learning.gaussian_process
        • deephyper.skopt.learning.gaussian_process.GaussianProcessRegressor
        • deephyper.skopt.learning.gaussian_process.gpr
        • deephyper.skopt.learning.gaussian_process.kernels
      • deephyper.skopt.learning.gbrt
        • deephyper.skopt.learning.gbrt.GradientBoostingQuantileRegressor
    • deephyper.skopt.moo
      • deephyper.skopt.moo.hypervolume
      • deephyper.skopt.moo.is_pareto_efficient
      • deephyper.skopt.moo.non_dominated_set
      • deephyper.skopt.moo.non_dominated_set_ranked
      • deephyper.skopt.moo.pareto_front
      • deephyper.skopt.moo.MoAugmentedChebyshevFunction
      • deephyper.skopt.moo.MoChebyshevFunction
      • deephyper.skopt.moo.MoLinearFunction
      • deephyper.skopt.moo.MoPBIFunction
      • deephyper.skopt.moo.MoQuadraticFunction
      • deephyper.skopt.moo.MoScalarFunction
    • deephyper.skopt.optimizer
      • deephyper.skopt.optimizer.Optimizer
      • deephyper.skopt.optimizer.acq_optimizer
        • deephyper.skopt.optimizer.acq_optimizer.pymoo_ga
        • deephyper.skopt.optimizer.acq_optimizer.pymoo_mixedga
      • deephyper.skopt.optimizer.optimizer
        • deephyper.skopt.optimizer.optimizer.boltzmann_distribution
        • deephyper.skopt.optimizer.optimizer.check_x_in_space
        • deephyper.skopt.optimizer.optimizer.cook_estimator
        • deephyper.skopt.optimizer.optimizer.cook_initial_point_generator
        • deephyper.skopt.optimizer.optimizer.cook_objective_scaler
        • deephyper.skopt.optimizer.optimizer.create_result
        • deephyper.skopt.optimizer.optimizer.gaussian_acquisition_1D
        • deephyper.skopt.optimizer.optimizer.has_gradients
        • deephyper.skopt.optimizer.optimizer.is_2Dlistlike
        • deephyper.skopt.optimizer.optimizer.is_listlike
        • deephyper.skopt.optimizer.optimizer.is_not_improving
        • deephyper.skopt.optimizer.optimizer.log
        • deephyper.skopt.optimizer.optimizer.normalize_dimensions
        • deephyper.skopt.optimizer.optimizer.Categorical
        • deephyper.skopt.optimizer.optimizer.GaussianProcessRegressor
        • deephyper.skopt.optimizer.optimizer.MoScalarFunction
        • deephyper.skopt.optimizer.optimizer.Optimizer
        • deephyper.skopt.optimizer.optimizer.Space
        • deephyper.skopt.optimizer.optimizer.ExhaustedFailures
        • deephyper.skopt.optimizer.optimizer.ExhaustedSearchSpace
    • deephyper.skopt.sampler
      • deephyper.skopt.sampler.Grid
      • deephyper.skopt.sampler.Halton
      • deephyper.skopt.sampler.Hammersly
      • deephyper.skopt.sampler.InitialPointGenerator
      • deephyper.skopt.sampler.Lhs
      • deephyper.skopt.sampler.Sobol
      • deephyper.skopt.sampler.base
        • deephyper.skopt.sampler.base.InitialPointGenerator
      • deephyper.skopt.sampler.grid
        • deephyper.skopt.sampler.grid.Grid
        • deephyper.skopt.sampler.grid.InitialPointGenerator
        • deephyper.skopt.sampler.grid.Space
      • deephyper.skopt.sampler.halton
        • deephyper.skopt.sampler.halton.Halton
        • deephyper.skopt.sampler.halton.InitialPointGenerator
        • deephyper.skopt.sampler.halton.Space
      • deephyper.skopt.sampler.hammersly
        • deephyper.skopt.sampler.hammersly.Halton
        • deephyper.skopt.sampler.hammersly.Hammersly
        • deephyper.skopt.sampler.hammersly.InitialPointGenerator
        • deephyper.skopt.sampler.hammersly.Space
      • deephyper.skopt.sampler.lhs
        • deephyper.skopt.sampler.lhs.InitialPointGenerator
        • deephyper.skopt.sampler.lhs.Lhs
        • deephyper.skopt.sampler.lhs.Space
      • deephyper.skopt.sampler.sobol
        • deephyper.skopt.sampler.sobol.InitialPointGenerator
        • deephyper.skopt.sampler.sobol.Sobol
        • deephyper.skopt.sampler.sobol.Space
    • deephyper.skopt.space
      • deephyper.skopt.space.check_dimension
      • deephyper.skopt.space.Categorical
      • deephyper.skopt.space.Dimension
      • deephyper.skopt.space.Integer
      • deephyper.skopt.space.Real
      • deephyper.skopt.space.Space
      • deephyper.skopt.space.space
        • deephyper.skopt.space.space.check_dimension
        • deephyper.skopt.space.space.Categorical
        • deephyper.skopt.space.space.CategoricalEncoder
        • deephyper.skopt.space.space.Dimension
        • deephyper.skopt.space.space.Identity
        • deephyper.skopt.space.space.Integer
        • deephyper.skopt.space.space.LabelEncoder
        • deephyper.skopt.space.space.LogN
        • deephyper.skopt.space.space.Normalize
        • deephyper.skopt.space.space.Pipeline
        • deephyper.skopt.space.space.Real
        • deephyper.skopt.space.space.Space
        • deephyper.skopt.space.space.StringEncoder
        • deephyper.skopt.space.space.ToInteger
      • deephyper.skopt.space.transformers
        • deephyper.skopt.space.transformers.CategoricalEncoder
        • deephyper.skopt.space.transformers.Identity
        • deephyper.skopt.space.transformers.LabelEncoder
        • deephyper.skopt.space.transformers.LogN
        • deephyper.skopt.space.transformers.Normalize
        • deephyper.skopt.space.transformers.Pipeline
        • deephyper.skopt.space.transformers.StringEncoder
        • deephyper.skopt.space.transformers.ToInteger
        • deephyper.skopt.space.transformers.Transformer
    • deephyper.skopt.utils
      • deephyper.skopt.utils.check_dimension_names
      • deephyper.skopt.utils.check_list_types
      • deephyper.skopt.utils.check_x_in_space
      • deephyper.skopt.utils.cook_estimator
      • deephyper.skopt.utils.cook_initial_point_generator
      • deephyper.skopt.utils.cook_objective_scaler
      • deephyper.skopt.utils.create_result
      • deephyper.skopt.utils.deepcopy
      • deephyper.skopt.utils.dimensions_aslist
      • deephyper.skopt.utils.dump
      • deephyper.skopt.utils.eval_callbacks
      • deephyper.skopt.utils.expected_minimum
      • deephyper.skopt.utils.expected_minimum_random_sampling
      • deephyper.skopt.utils.has_gradients
      • deephyper.skopt.utils.is_2Dlistlike
      • deephyper.skopt.utils.is_listlike
      • deephyper.skopt.utils.load
      • deephyper.skopt.utils.normalize_dimensions
      • deephyper.skopt.utils.point_asdict
      • deephyper.skopt.utils.point_aslist
      • deephyper.skopt.utils.use_named_args
      • deephyper.skopt.utils.wraps
      • deephyper.skopt.utils.ConstantKernel
      • deephyper.skopt.utils.Dimension
      • deephyper.skopt.utils.ExtraTreesRegressor
      • deephyper.skopt.utils.GaussianProcessRegressor
      • deephyper.skopt.utils.GradientBoostingQuantileRegressor
      • deephyper.skopt.utils.Grid
      • deephyper.skopt.utils.Halton
      • deephyper.skopt.utils.Hammersly
      • deephyper.skopt.utils.HammingKernel
      • deephyper.skopt.utils.InitialPointGenerator
      • deephyper.skopt.utils.Lhs
      • deephyper.skopt.utils.Matern
      • deephyper.skopt.utils.OrderedDict
      • deephyper.skopt.utils.RandomForestRegressor
      • deephyper.skopt.utils.Sobol
      • deephyper.skopt.utils.Space
  • Stopper
    • deephyper.stopper.ConstantStopper
    • deephyper.stopper.IdleStopper
    • deephyper.stopper.LCModelStopper
    • deephyper.stopper.MedianStopper
    • deephyper.stopper.Stopper
    • deephyper.stopper.SuccessiveHalvingStopper
    • deephyper.stopper.lce
      • deephyper.stopper.lce.BayesianLearningCurveRegressor

Developer's Guide

  • Contributing
    • Development
    • Documentation
    • Running Tests
    • Build and Release
  • Software Architecture
  • Repository
  • Suggest edit
  • Open issue
  • .rst

deephyper.hpo.Search

Contents

  • Search
    • Search.ask()
    • Search.dump_context()
    • Search.dump_jobs_done_to_csv()
    • Search.extend_results_with_pareto_efficient_indicator()
    • Search.search()
    • Search.search_id
    • Search.tell()
    • Search.to_json()

deephyper.hpo.Search#

class deephyper.hpo.Search(problem, evaluator, random_state=None, log_dir='.', verbose=0, stopper=None, **kwargs)[source]#

Bases: ABC

Abstract class which represents a search algorithm.

Parameters:
  • problem – object describing the search/optimization problem.

  • evaluator – object describing the evaluation process.

  • random_state (np.random.RandomState, optional) – Initial random state of the search. Defaults to None.

  • log_dir (str, optional) – Path to the directoy where results of the search are stored. Defaults to ".".

  • verbose (int, optional) – Use verbose mode. Defaults to 0.

  • stopper (Stopper, optional) – a stopper to leverage multi-fidelity when evaluating the function. Defaults to None which does not use any stopper.

Methods

ask

Ask the search for new configurations to evaluate.

check_evaluator

dump_context

Dumps the context in the log folder.

dump_jobs_done_to_csv

Dump jobs completed to CSV in log_dir.

extend_results_with_pareto_efficient_indicator

Extend the results DataFrame with Pareto-Front.

search

Execute the search algorithm.

tell

Tell the search the results of the evaluations.

to_json

Returns a json version of the search object.

Attributes

search_id

The identifier of the search used by the evaluator.

ask(n: int = 1) → List[Dict][source]#

Ask the search for new configurations to evaluate.

Parameters:

n (int, optional) – The number of configurations to ask. Defaults to 1.

Returns:

a list of hyperparameter configurations to evaluate.

Return type:

List[Dict]

dump_context()[source]#

Dumps the context in the log folder.

dump_jobs_done_to_csv(flush: bool = False)[source]#

Dump jobs completed to CSV in log_dir.

Parameters:

flush (bool, optional) – Force the dumping if set to True. Defaults to False.

extend_results_with_pareto_efficient_indicator()[source]#

Extend the results DataFrame with Pareto-Front.

A column pareto_efficient is added to the dataframe. It is True if the point is Pareto efficient.

search(max_evals: int = -1, timeout: int = None, max_evals_strict: bool = False)[source]#

Execute the search algorithm.

Parameters:
  • max_evals (int, optional) – The maximum number of evaluations of the run function to perform before stopping the search. Defaults to -1, will run indefinitely.

  • timeout (int, optional) – The time budget (in seconds) of the search before stopping. Defaults to None, will not impose a time budget.

  • max_evals_strict (bool, optional) – If True the search will not spawn more than max_evals jobs. Defaults to False.

Returns:

A pandas DataFrame containing the evaluations performed or None if the

search could not evaluate any configuration.

This DataFrame contains the following columns: - p:HYPERPARAMETER_NAME: for each hyperparameter of the problem. - objective: for single objective optimization. - objective_0, objective_1, …: for multi-objective optimization. - job_id: the identifier of the job. - job_status: the status of the job at the end of the search. - m:METADATA_NAME: for each metadata of the problem. Some metadata are always

present like m:timestamp_submit and m:timestamp_gather which are the timestamps of the submission and gathering of the job.

Return type:

DataFrame

property search_id#

The identifier of the search used by the evaluator.

tell(results: List[HPOJob])[source]#

Tell the search the results of the evaluations.

Parameters:
  • results (List[HPOJob]) – a list of HPOJobs from which hyperparameters and objectives can

  • retrieved. (be)

to_json()[source]#

Returns a json version of the search object.

previous

deephyper.hpo.RegularizedEvolution

next

deephyper.hpo.gmm

Contents
  • Search
    • Search.ask()
    • Search.dump_context()
    • Search.dump_jobs_done_to_csv()
    • Search.extend_results_with_pareto_efficient_indicator()
    • Search.search()
    • Search.search_id
    • Search.tell()
    • Search.to_json()

By DeepHyper Team

© Copyright 2018-2024, DeepHyper Team.