deephyper.skopt.utils.ConstantKernel

deephyper.skopt.utils.ConstantKernel#

class deephyper.skopt.utils.ConstantKernel(*args: Any, **kwargs: Any)[source]#

Bases: Kernel, ConstantKernel

Methods

gradient_x

Computes gradient of K(x, X_train) with respect to x

__call__(*args: Any, **kwargs: Any) Any#

Call self as a function.

gradient_x(x, X_train)[source]#

Computes gradient of K(x, X_train) with respect to x

Args: x: array-like, shape=(n_features,)

A single test point.

X_train: array-like, shape=(n_samples, n_features)

Training data used to fit the gaussian process.

Returns: gradient_x: array-like, shape=(n_samples, n_features)

Gradient of K(x, X_train) with respect to x.