Source code for deephyper.evaluator.storage._ray_storage

import ray

from typing import Any, Dict, Hashable, List, Tuple

from deephyper.evaluator.storage._storage import Storage
from deephyper.evaluator.storage._memory_storage import MemoryStorage


[docs] class RayStorage(Storage): """Storage class using Ray actors. The RayStorage is wrapping the MemoryStorage class to be a Ray actor. Args: address (str, optional): address of the Ray-head. Defaults to ``"auto"``, to connect to the local head node. """ ray_storage_counter = 0 def __init__(self, address="auto") -> None: super().__init__() self.address = address self.actor_name = f"{RayStorage.ray_storage_counter}" RayStorage.ray_storage_counter += 1 self.memory_storage_actor = None def _connect(self): if self.memory_storage_actor is None: self.memory_storage_actor = ( ray.remote(MemoryStorage) .options(name=self.actor_name, namespace="deephyper") .remote() ) else: self.memory_storage_actor = ray.get_actor(self.actor_name) self.connected = True def __getstate__(self): state = { "connected": self.connected, "actor_name": self.actor_name, "address": self.address, } return state def __setstate__(self, newstate): self.__dict__.update(newstate) if not (ray.is_initialized()): ray.init(address=self.address) self.memory_storage_actor = ray.get_actor( self.actor_name, namespace="deephyper" )
[docs] def create_new_job(self, search_id: Hashable) -> Hashable: """Creates a new job in the store and returns its identifier. Args: search_id (Hashable): The identifier of the search in which a new job is created. Returns: Hashable: The created identifier of the job. """ return ray.get(self.memory_storage_actor.create_new_job.remote(search_id))
[docs] def store_search_value( self, search_id: Hashable, key: Hashable, value: Any ) -> None: """Stores the value corresponding to key for search_id. Args: search_id (Hashable): The identifier of the job. key (Hashable): A key to use to store the value. value (Any): The value to store. """ ray.get( self.memory_storage_actor.store_search_value.remote(search_id, key, value) )
[docs] def load_search_value(self, search_id: Hashable, key: Hashable) -> Any: """Loads the value corresponding to key for search_id. Args: search_id (Hashable): The identifier of the job. key (Hashable): A key to use to access the value. """ return ray.get( self.memory_storage_actor.load_search_value.remote(search_id, key) )
[docs] def store_job(self, job_id: Hashable, key: Hashable, value: Any) -> None: """Stores the value corresponding to key for job_id. Args: job_id (Hashable): The identifier of the job. key (Hashable): A key to use to store the value. value (Any): The value to store. """ ray.get(self.memory_storage_actor.store_job.remote(job_id, key, value))
[docs] def store_job_in( self, job_id: Hashable, args: Tuple = None, kwargs: Dict = None ) -> None: """Stores the input arguments of the executed job. Args: job_id (Hashable): The identifier of the job. args (Optional[Tuple], optional): The positional arguments. Defaults to None. kwargs (Optional[Dict], optional): The keyword arguments. Defaults to None. """ ray.get(self.memory_storage_actor.store_job_in.remote(job_id, args, kwargs))
[docs] def store_job_out(self, job_id: Hashable, value: Any) -> None: """Stores the output value of the executed job. Args: job_id (Hashable): The identifier of the job. value (Any): The value to store. """ ray.get(self.memory_storage_actor.store_job_out.remote(job_id, value))
[docs] def store_job_metadata(self, job_id: Hashable, key: Hashable, value: Any) -> None: """Stores other metadata related to the execution of the job. Args: job_id (Hashable): The identifier of the job. key (Hashable): A key to use to store the metadata of the given job. value (Any): The value to store. """ ray.get(self.memory_storage_actor.store_job_metadata.remote(job_id, key, value))
[docs] def load_all_search_ids(self) -> List[Hashable]: """Loads the identifiers of all recorded searches. Returns: List[Hashable]: A list of identifiers of all the recorded searches. """ return ray.get(self.memory_storage_actor.load_all_search_ids.remote())
[docs] def load_all_job_ids(self, search_id: Hashable) -> List[Hashable]: """Loads the identifiers of all recorded jobs in the search. Args: search_id (Hashable): The identifier of the search. Returns: List[Hashable]: A list of identifiers of all the jobs. """ return ray.get(self.memory_storage_actor.load_all_job_ids.remote(search_id))
[docs] def load_job(self, job_id: Hashable) -> dict: """Loads the data of a job. Args: job_id (Hashable): The identifier of the job. Returns: dict: The corresponding data of the job. """ return ray.get(self.memory_storage_actor.load_job.remote(job_id))
[docs] def load_metadata_from_all_jobs( self, search_id: Hashable, key: Hashable ) -> List[Any]: """Loads a given metadata value from all jobs. Args: search_id (Hashable): The identifier of the search. key (Hashable): The identifier of the value. Returns: List[Any]: A list of all the retrieved metadata values. """ return ray.get( self.memory_storage_actor.load_metadata_from_all_jobs.remote(search_id, key) )
[docs] def load_out_from_all_jobs(self, search_id: Hashable) -> List[Any]: """Loads the output value from all jobs. Args: search_id (Hashable): The identifier of the search. Returns: List[Any]: A list of all the retrieved output values. """ return ray.get( self.memory_storage_actor.load_out_from_all_jobs.remote(search_id) )
[docs] def load_jobs(self, job_ids: List[Hashable]) -> dict: """Load all data from a given list of jobs' identifiers. Args: job_ids (list): The list of job identifiers. Returns: dict: A dictionnary of the retrieved values where the keys are the identifier of jobs. """ return ray.get(self.memory_storage_actor.load_jobs.remote(job_ids))