Source code for deephyper.skopt.moo._multiobjective

import abc

import numpy as np

from ..utils import is_listlike


[docs] class MoScalarFunction(abc.ABC): """Abstract class representing a scalarizing function. Args: n_objectives (int, optional): Number of objective functions. Defaults to ``1``. weight (float or 1-D array, optional): Array of weights for each objective function. Defaults to ``None``. weight_sampling_periode (int, optional): Sampling periode for the weight vector. Defaults to ``5``. utopia_point (float or 1-D array, optional): Array of reference values for each objective function. Defaults to ``None``. random_state (int, optional): Random seed. Defaults to ``None``. """ def __init__( self, n_objectives: int = 1, weight=None, weight_sampling_periode: int = 1, utopia_point=None, random_state=None, ): self._seed = None if type(random_state) is int: self._seed = random_state self._rng = np.random.RandomState(random_state) elif isinstance(random_state, np.random.RandomState): self._rng = random_state else: self._rng = np.random.RandomState() if type(n_objectives) is not int: raise ValueError("Parameter 'n_objectives' shoud be an integer value!") self._n_objectives = n_objectives self._utopia_point = None if utopia_point is not None: self._check_shape(utopia_point) self._utopia_point = np.asarray(utopia_point) # Record the passed weight vector. self.weight = weight self.weight_sampling_periode = weight_sampling_periode self.counter_weight_sampling = -1 self._weight = None self.update_weight() def update_weight(self): self.counter_weight_sampling += 1 if self.counter_weight_sampling % self.weight_sampling_periode != 0: return if self.weight == "random" or self.weight is None: # Uniformly sample from the probability simplex using Remark 1.3 # from https://arxiv.org/pdf/1909.06406.pdf # and the inverse exponential CDF: F_inv(p) = -log(1 - p). # Can be checked with plot similar to Fig. 3 in http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf self._weight = -np.log(1.0 - self._rng.rand(self._n_objectives)) self._weight /= np.sum(self._weight) # self._weight = self._rng.dirichlet([1.0 for _ in range(self._n_objectives)]) elif self.weight == "uniform": self._weight = np.ones(self._n_objectives) / self._n_objectives elif is_listlike(self.weight): self._check_shape(self.weight) self._weight = np.asarray(self.weight) else: raise ValueError(f"Invalid weight value: {self.weight}") def _check_shape(self, y): """Check if the shape of y is consistent with the object.""" if not ( (np.ndim(y) == 0 and self._n_objectives == 1) or (np.ndim(y) == 1 and np.shape(y)[0] == self._n_objectives) ): raise ValueError( f"Expected y to be a scalar or 1-D array of length {self._n_objectives}" )
[docs] def scalarize(self, y): """Convert the input array (or scalar) into a scalar value. Args: yi (scalar or 1-D array): The input array or scalar to be scalarized. Returns: float: The converted scalar value. """ y = np.asarray(y) return self._scalarize(y)
[docs] def normalize(self, yi): """Compute normalization constants based on the history of evaluated objective values. Args: yi (array): Array of evaluated objective values. Raises: ValueError: Raised if yi is not a list of scalars each of length _n_objectives. """ if np.ndim(yi) != 2: raise ValueError(f"Expected yi to be a 2D-array but is {yi}!") self._utopia_point = np.min(yi, axis=0)
@abc.abstractmethod def _scalarize(self, y): """Scalarization to be implemented. Args: y: Array of length _n_objectives. Returns: float: Converted scalar value. """
[docs] class MoLinearFunction(MoScalarFunction): """This scalarizing function linearly combines the individual objective values (after automatically scaling them in [0, 1]). Args: n_objectives (int, optional): Number of objective functions. Defaults to ``1``. weight (float or 1-D array, optional): Array of weights for each objective function. Defaults to ``None``. weight_sampling_periode (int, optional): Sampling periode for the weight vector. Defaults to ``5``. utopia_point (float or 1-D array, optional): Array of reference values for each objective function. Defaults to ``None``. random_state (int, optional): Random seed. Defaults to ``None``. """ def __init__( self, n_objectives: int = 1, weight=None, weight_sampling_periode: int = 1, utopia_point=None, random_state=None, ): super().__init__( n_objectives, weight, weight_sampling_periode, utopia_point, random_state ) def _scalarize(self, y): return np.dot(self._weight, y)
[docs] class MoChebyshevFunction(MoScalarFunction): """This scalarizing function computes a weighted infinity-norm of the individual objective values (after automatically scaling them in [0, 1]). Args: n_objectives (int, optional): Number of objective functions. Defaults to ``1``. weight (float or 1-D array, optional): Array of weights for each objective function. Defaults to ``None``. weight_sampling_periode (int, optional): Sampling periode for the weight vector. Defaults to ``5``. utopia_point (float or 1-D array, optional): Array of reference values for each objective function. Defaults to ``None``. random_state (int, optional): Random seed. Defaults to ``None``. """ def __init__( self, n_objectives: int = 1, weight=None, weight_sampling_periode: int = 1, utopia_point=None, random_state=None, ): super().__init__( n_objectives, weight, weight_sampling_periode, utopia_point, random_state ) def _scalarize(self, y): return np.max(np.multiply(self._weight, np.abs(y)))
[docs] class MoPBIFunction(MoScalarFunction): """This scalarizing function computes the projection of the objective vector along a reference vector and adds a penalty term to minimize deviations from the projected point to the attainable objective set. See https://doi.org/10.1109/TEVC.2007.892759 Args: n_objectives (int, optional): Number of objective functions. Defaults to ``1``. weight (float or 1-D array, optional): Array of weights for each objective function. Defaults to ```None``. weight_sampling_periode (int, optional): Sampling periode for the weight vector. Defaults to ``5``. utopia_point (float or 1-D array, optional): Array of reference values for each objective function. Defaults to ``None``. random_state (int, optional): Random seed. Defaults to ``None``. penalty (float, optional): Value of penalty parameter. Defaults to ``100.0``. """ def __init__( self, n_objectives: int = 1, weight=None, weight_sampling_periode: int = 1, utopia_point=None, random_state=None, penalty: float = 5.0, ): self._penalty = np.abs(penalty) if np.isreal(penalty) else 5.0 super().__init__( n_objectives, weight, weight_sampling_periode, utopia_point, random_state ) def update_weight(self): super().update_weight() self._weightnorm = np.linalg.norm(self._weight) ** 2 def _scalarize(self, y): d1 = np.dot(self._weight, y) / self._weightnorm d2 = np.linalg.norm(y - (d1 * self._weight), 1) return d1 + (self._penalty * d2)
[docs] class MoAugmentedChebyshevFunction(MoScalarFunction): """This scalarizing function computes a sum of weighted infinity- and 1-norms of the individual objective values (after automatically scaling them in [0, 1]). Args: n_objectives (int, optional): Number of objective functions. Defaults to ``1``. weight (float or 1-D array, optional): Array of weights for each objective function. Defaults to ``None``. weight_sampling_periode (int, optional): Sampling periode for the weight vector. Defaults to ``5``. utopia_point (float or 1-D array, optional): Array of reference values for each objective function. Defaults to ``None``. random_state (int, optional): Random seed. Defaults to ``None``. penalty (float, optional): Value of weight given to 1-norm. Defaults to ``0.001``. """ def __init__( self, n_objectives: int = 1, weight=None, weight_sampling_periode: int = 1, utopia_point=None, random_state=None, alpha: float = 0.001, ): self._alpha = np.abs(alpha) if np.isreal(alpha) else 0.001 super().__init__( n_objectives, weight, weight_sampling_periode, utopia_point, random_state ) def _scalarize(self, y): y = np.multiply(self._weight, np.abs(y)) return np.max(y) + (self._alpha * np.linalg.norm(y, 1))
[docs] class MoQuadraticFunction(MoScalarFunction): """This scalarizing function quadratically combines the individual objective values (after automatically scaling them in [0, 1]). It can be interpreted a smoother version of `MoChebyshevFunction`. Args: n_objectives (int, optional): Number of objective functions. Defaults to ``1``. weight (float or 1-D array, optional): Array of weights for each objective function. Defaults to ``None``. weight_sampling_periode (int, optional): Sampling periode for the weight vector. Defaults to ``5``. utopia_point (float or 1-D array, optional): Array of reference values for each objective function. Defaults to ``None``. random_state (int, optional): Random seed. Defaults to ``None``. penalty (float, optional): Value of smoothness parameter. Larger values make it less smooth. Defaults to ``10.0``. """ def __init__( self, n_objectives: int = 1, weight=None, weight_sampling_periode: int = 1, utopia_point=None, random_state=None, alpha: float = 10.0, ): self._alpha = np.abs(alpha) if np.isreal(alpha) else 10.0 super().__init__( n_objectives, weight, weight_sampling_periode, utopia_point, random_state ) def update_weight(self): super().update_weight() U, _, _ = np.linalg.svd(self._weight.reshape(-1, 1), full_matrices=True) self._Q = U.dot( np.diag([self._alpha if j > 0 else 1.0 for j in range(self._n_objectives)]) ).dot(U.T) def _scalarize(self, y): return y.T.dot(self._Q).dot(y)