deephyper.skopt.optimizer.acq_optimizer.pymoo_mixedga.Choice

deephyper.skopt.optimizer.acq_optimizer.pymoo_mixedga.Choice#

class deephyper.skopt.optimizer.acq_optimizer.pymoo_mixedga.Choice(value: object | None = None, options: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] | None = None, all: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] | None = None, **kwargs: Any)[source]#

Bases: Variable

Class for the representation of a discrete, subset decision variable.

Methods

get

Get the value of a decision variable.

sample

Randomly sample n instances of a decision variable.

set

Set the value of a decision variable.

get(**kwargs: Any) object#

Get the value of a decision variable.

Parameters:

kwargs (Any) – Additional keyword arguments.

Returns:

out – The value of the decision variable.

Return type:

object

sample(n: int | None = None) object | ndarray#

Randomly sample n instances of a decision variable.

Parameters:

n (int, None) – Number of decision variable samples which to draw. If int, sample n decision variables. If None, sample a single decision variables.

Returns:

out – If n is int, return a np.ndarray of shape (n,) containing sampled decision variables. If n is None, return an object of a sampled decision variable.

Return type:

object, np.ndarray

set(value: object) None#

Set the value of a decision variable.

Parameters:

value (object) – Value to assign to the decision variable.

vtype#

alias of object